

Bahrain's Experience in using Stochastic Modeling to Assess the Sustainability of a Brackish, Non-renewable Aquifer to Feed a Desalination Plant

Dr. Waleed K Al-Zubari Water Resources Management Program

Introduction

- The Rus-Umm Er Radhuma Aquifer (C Aquifer) occurs in the form of a lens of finite lateral extent (underlying the main freshwater Dammam aquifer)
- Contains brackish waters (8-15 g/L) underlain everywhere by brines (50-100 g/L)
- Industrial sector utilization started in 1982 (Amiri Decree 12/1980)
- Major utilization started at the 1984 at a rate of 24 Mm³/y to feed the Abu Jarjur RO desalination plant (AJROP), designed feedwater <20 g/L

Aquifer C Extension and Location of Abu Jarjur Wellfield and RO Plant

Hydrogeological cross section showing Aquifer C System geometry and boundaries

- As a non-renewable aquifer, its management is based on mining a onetime brackish water reserve stored in the aquifer
- Main management objective is to sustain the aquifer future availability in feeding the RO desalination plant with a specified salinity limit (20 g/L) over the economic age of the desalination plant/and plant rehabilitation period
- i.e., the economics of the process and its continuation (i.e., brackish water RO membranes) depends primarily on the increase in the salinity(not to exceed 20 g/L) of the water produced by the wellfield to feed the desalination plant
- After 40 years of production, rehabilitation of the RO plant is planned (a major investment); the decision will be dependent on the future salinity of the wellfield

Methodology

- Thick aquifer (>150 m), multilayered, fractured, and highly heterogeneous
- Very limited data available on its hydraulic parameters (i.e., Horizontal and vertical Hydraulic, storage coefficients)
- Estimated abstraction by other sectors

Stochastic vs Deterministic Modeling Embedding Uncertainty in Model Results

Output is provided as a probability distribution, with most probable value and confidence intervals

Groundwater Mathematical Modeling

Governing Equations and Simulation Code for Groundwater Flow

$$\frac{\partial}{\partial x}\left(T_{xx}\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(T_{yy}\frac{\partial h}{\partial y}\right) + b\frac{\partial}{\partial z}\left(K_{zz}\frac{\partial h}{\partial z}\right) = S\frac{\partial h}{\partial t} + b.W(x, y, z, t)$$

MODFLOW (FDM approximation)

Governing Equations and Simulation Code for Solute Transport in Groundwater

$$\frac{\partial C}{\partial t} = D_L \frac{\partial^2 C}{\partial x^2} + D_T \frac{\partial^2 C}{\partial y^2} - V_x \frac{\partial C}{\partial x} + \frac{q_s}{\theta} C_s + \sum R_n$$

MT3DMS (advective-dispersive FDM approximation)

Groundwater Model Development (conceptualization)

Conceptual Model of Aquifer C System Used in Numerical Simulation

Physical System	Nume	rical System Zone	Q	in C t	5 °
Khobar Aquifer- Constant head	I 🕇	1			
Sharks Tooth Shale (aquitard)	\$ ↔	2			
Rus	\$ ↔	3	4		1
UER 1	\$ ↔	4			1
UER 2	\$ ↔	5			
UER 3	\$ ↔	6			
UER 4	\$ ↔	7			
UER 5	\$ ↔	8	•		
UER 6	\$ ↔	9			
Aruma Shale (aquitard)	\$ ↔	10			
Aruma Aquifer- Constant head	\$ ↔	11			
Horizontal flow simulated	Vertical	flow simulated			

Typical Salinity Profile of C Aquifer in East Bahrain (Pre-development Conditions)

Total Dissolved Solids, g/L

Groundwater Model Development (Grid design and parameters initialization)

Groundwater Model Development

Calibration by History Matching

Reconstructing aquifer abstraction history (1984-2024) to reproduce observed water levels and salinity levels by changing hydraulic parameters

simulated and observed potentiometric hydrographs (1984-2024)

Simulated vs observed TDS in RAJ wellfield individual wells (1984-2024)

Simulated water level maps in the C aquifer (zone 5) for the period 1984 to 2024

2014

2024

Ну	draulic Head [L]
	-5 to -4.5
	-4.5 to -4
	-4 to -3.5
	-3.5 to -3
	-3 to -2.5
	-2.5 to -2
	-2 to -1.5
	-1.5 to -1
	-1 to -0.5
	-0.5 to 0
	0 to 0.5
	0.5 to 1
	1 to 1.5
	1.5 to 2
	2 to 2.5
	2.5 to 3
	3 to 3.5
	3.5 to 4
	4 to 4.5
	4.5 to 5
	5 to 5.5

simulated salinity maps in the C aquifer (zone 5) for the period 1984 to 2024

2014

Sensitivity Analysis of Model Hydraulic Parameters

Sensitivity Coefficient

Input variable (hydraulic parameter)

performance measure (output variable = wellfield salinity

Importance Coefficient

expected

parameter range

$$I = \frac{R_P}{\varphi_0} \left[\frac{\delta \varphi}{\delta P} \right]_0 = \frac{R_P}{P_0} \left(S \right)$$

Rank	Devemeter	Sensitivity Coefficient		Importance	Overall				
	Parameter	S+	S-	Coefficient, I	Ranking				
Aquifer's Hydraulic Conductivity (doubled and halved)									
4	Zone 3 (Rus)	-0.06	-0.03	0.080	4				
3	Zone 4 (UER)	-0.10	-0.02	0.106	3				
1	Zone 5 (UER)	-0.12	-0.05	0.147	1				
2	Zone 6 (UER)	0.02	0.22	0.127	2				
5	Zone 7 (UER)	0.00	0.13	0.065	6				
6	Zone 8 (UER)	0.00	0.11	0.054	7				
7	Zone 9 (UER)	0.03	0.00	0.035	10				
Aquitard's Vertical Hydraulic Conductivity (doubled and halved)									
1	Zone 2 (Sharks Tooth Shale)	0.02	0.04	0.034	11				
2	Zone 10 (Aruma Shale)	0.00	0.00	0.000	Х				
Aquifer's Porosity (doubled and halved)									
5	Zone 3 (Rus)	0.00	0.00	0.000	х				
2	Zone 4 (UER)	0.03	0.04	0.054	7				
3	Zone 5 (UER)	-0.04	0.01	0.052	8				
1	Zone 6 (UER)	-0.07	0.01	0.078	5				
4	Zone 7 (UER)	-0.02	0.01	0.022	15				
5	Zone 8 (UER)	0.00	0.00	0.000	Х				
5	Zone 9 (UER)	0.00	0.00	0.000	Х				
	Aquifer's Storge Coefficient (increased and decreased by one order of magnitude)								
5	Zone 3 (Rus)	-0.01	0.04	0.027	14				
1	Zone 4 (UER)	-0.01	0.07	0.043	9				
6	Zone 5 (UER)	-0.01	-0.02	0.022	15				
5	Zone 6 (UER)	0.01	-0.04	0.027	14				
3	Zone 7 (UER)	-0.02	-0.30	0.033	12				
2	Zone 8 (UER)	-0.01	0.01	0.035	10				
4	Zone 9 (UER)	0.01	-0.04	0.030	13				

Stochastic Simulation

Example conditioned realizations of the hydraulic conductivity of zone 5 (from a total of 20 realizations)

Predictive simulation

Predicted Wellfield Salinity by Stochastic Conditional Simulation (20 Transmissivity Realizations)

(average, standard deviation, and 68%, 95%, and 99% CI)

Recommendations

- Continuous monitoring of abstraction, water levels and salinity of aquifer C
- To use prepared wellfield protection area (30 years) in new wells licensing
- To prolong aquifer life in feeding RAJ wellfield, two management schemes need to be investigated:
 - Modification of the present wellfield design
 - modifying individual wells spacing and number
 - scheduling of pumping
 - raising wells intake intervals
 - Augmenting aquifer storage by MAR
 - Rainwater or surplus tertiary/secondary treated wastewater
- Hydrogeological investigation and model "post-auditing" and prediction to be made periodically (recommended every 2 years)

Wellfield Protection Area

Thank You

Q & A